Highly diversified molecular evolution of downstream transcription start sites in rice and Arabidopsis.
نویسندگان
چکیده
Alternative usage of transcription start sites (TSSs) is one of the key mechanisms to generate gene variation in eukaryotes. Here, we show diversified molecular evolution of TSSs in remotely related flowering plants, rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), by comprehensive analyses of large collections of full-length cDNAs and genome sequences. We determined 45,917 representative TSSs within 23,445 loci of rice and 35,313 TSSs within 16,964 loci of Arabidopsis, about two TSSs per locus in either species. The nucleotide features around TSSs displayed distinct patterns when the most upstream TSSs were compared with downstream TSSs. We found that CG-skew and AT-skew were clearly different between upstream and downstream TSSs, and that this difference was commonly observed in rice and Arabidopsis. Relative entropy analysis revealed that the most upstream TSSs had retained canonical cis elements, whereas downstream TSSs showed atypical nucleotide features. Expression patterns were distinguishable between upstream and downstream TSSs. These results indicate that plant TSSs were generally diversified in downstream regions, resulting in the development of new gene expression patterns. Furthermore, our comparative analysis of TSS variation between the species showed a positive correlation between TSS number and gene conservation. Rice and Arabidopsis might have evolved novel TSSs in an independent manner, which led to diversification of these two species.
منابع مشابه
Molecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملIsolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملThe role of casein kinase II in flowering time regulation has diversified during evolution.
Casein kinase II (CK2) is a protein kinase with an evolutionarily conserved function as a circadian clock component in several organisms, including the long-day plant Arabidopsis (Arabidopsis thaliana). The circadian clock component CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is a CK2 target in Arabidopsis, where it influences photoperiodic flowering. In rice (Oryza sativa), a short-day plant, Heading d...
متن کاملMycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region
Mycobacterium aviumsubspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne’s disease) in ruminants. Plus, MAP has consistently been isolated from Crohn’s disease (CD) lesions in humans; a notion implying possible direct causative ...
متن کاملSubfunctionalization of Sigma Factors during the Evolution of Land Plants Based on Mutant Analysis of Liverwort (Marchantia polymorpha L.) MpSIG1
Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 149 3 شماره
صفحات -
تاریخ انتشار 2009